Non-persistence to Oral Anticoagulation Treatment in Nonvalvular Atrial Fibrillation Patients in the United States

Authors: Amol Dhamane¹, Manuela Di Fusco², Cynthia Gutierrez³, Mauricio Ferri¹, Cristina Russ², Wan-Lun Tsai³, Birol Emir², Allison Keshishian³

¹ Bristol-Myers Squibb Company, Lawrenceville, NJ, USA
² Pfizer, Inc., New York, NY, USA
³ STATinMED Research, Ann Arbor, MI, USA

Disclosures

This study was sponsored by Bristol-Myers Squibb and Pfizer.

Conflicts of Interest: Amol Dhamane and Mauricio Ferri are paid employees of Bristol-Myers Squibb; Manuela Di Fusco, Cristina Russ and Birol Emir are paid employees of Pfizer Inc. Allison Keshishian, Cynthia Gutierrez and Wan-Lun Tsai are paid employees of STATinMED Research, which is a paid consultant to Pfizer and Bristol-Myers Squibb.

Background and Objectives

- recommended to reduce the risk of stroke and all-cause mortality.¹
- Randomized controlled trials and real-world studies have previously shown that direct oral (SE) and variable comparative risks of major bleeding (MB) versus warfarin.^{2,3}
- 1.30; 1.02-1.67).4
- ulletsome studies reporting a wide range of persistence from 55% to 69% after 12 months*.^{5,6}
- among NVAF patients.

*Generally, non-persistence has been defined as patients either discontinuing, stopping, or switching from their OAC treatment.⁵

• Atrial fibrillation (AF) is a known independent risk factor for stroke.¹ Oral anticoagulants (OACs) are

anticoagulants (DOACs) were associated with similar or lower risks of stroke/systemic embolism

• Studies have shown that nonvalvular AF (NVAF) patients who discontinue DOACs have higher rates of thromboembolic events (5.6 vs. 2.5; p<0.001), major (6.1 vs. 3.7; p=0.004) bleeds and minor (21.2 vs. 11.1; p<0.001) bleeds, and continue to have higher risk of all-cause mortality (HR:

Previous studies have found gradual declines in persistence after the initial prescriptions, with

This analysis used US commercial claims data to compare the risk of non-persistence of OACs

Methods

Data Source

Eligible Patient Criteria

- period was 01JAN2012-31MAR2019.
- rivaroxaban 01JAN2013-31MAR2019.
- date

Note: Edoxaban was not included in the study given the recent FDA approval in 2015, and the hence small sample size (N = 276). AF: atrial fibrillation; NVAF: non-valvular atrial fibrillation; OAC: oral anticoagulant; ICD-9-CM: International Classification of Diseases, 9th Revision, Clinical Modification; ICD-10-CM: International Classification of Diseases, 9th Revision, Clinical Modification.

 IMS PharMetrics Plus™ Database ("PharMetrics"), a US commercial claims database, covering ~40 million lives in all 50 states. The study

 $\bullet \geq 1$ pharmacy claim for warfarin, apixaban, dabigatran, or

• Aged ≥18 years with AF (ICD-9-CM: 427.31; ICD-10-CM code |480-1482) and ≥ 12 months continuous health plan enrollment pre-index

• Excluded: Patients with any OAC treatment within 12 months preindex date, evidence of valvular heart disease, venous thromboembolism, transient AF (pericarditis, hyperthyroidism, thyrotoxicity) or heart valve replacement/transplant during baseline period, pregnancy during study period, or hip/knee replacement surgery ≤ 6 weeks pre-index date, more than one OAC prescription on the index date, and less than 60 days of follow-up.

Methods

Statistical Methods

- end.
- persistence.
- persistence.
- non-persistence risk.

 Non-persistence was defined as either discontinuation or switch of index therapy during the follow-up. Follow-up was defined as time from patients' index therapy to health plan disenrollment or study

•The rate of non-persistence among OAC-naive NVAF patients who initiated an OAC during the study period was calculated during the follow-up period overall and at 12 months post-index date.

•Unadjusted Kaplan-Meier survival curves were generated to illustrate time-to-non-persistence along with cumulative incidences of non-

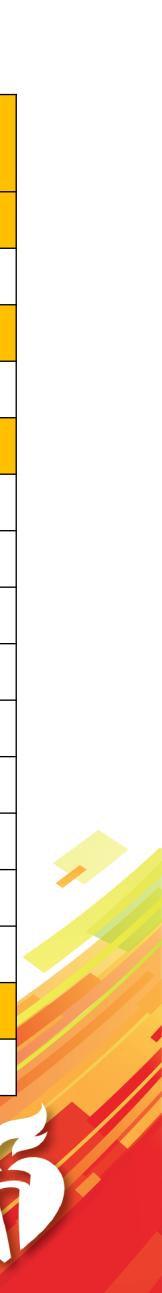
 Cox proportional models with robust sandwich estimates were developed to evaluate non-persistence risk and predictors of non-

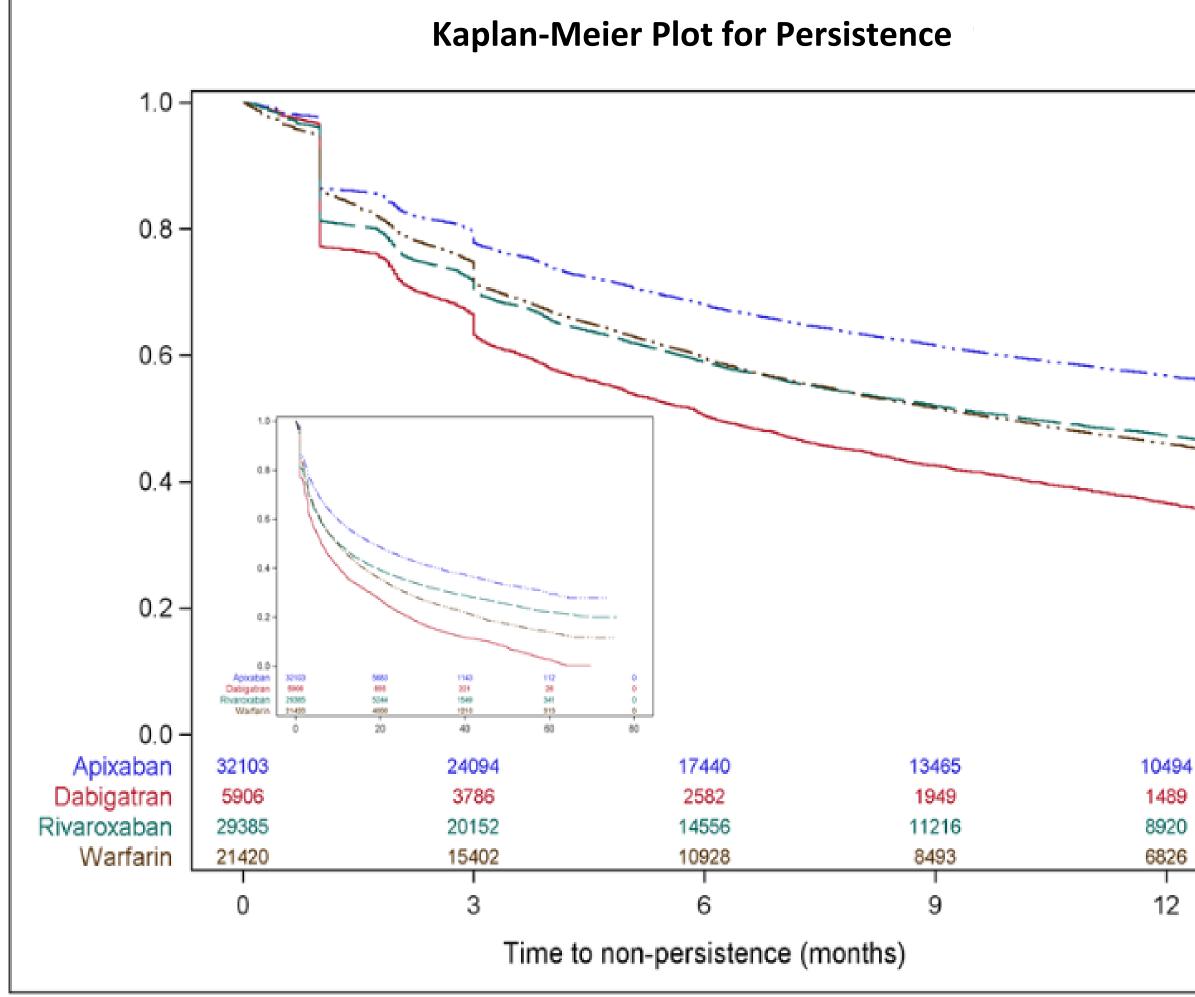
•Time-varying covariates (e.g., major bleeding, stroke) were included in the Cox proportional hazards models and were used to evaluate

Variables

- **Baseline Predictors:** Predictors of non-persistence measured at baseline. ulleto Age
 - Devo-Charlson Comorbidity Index Score
 - CHA₂DS₂-VASc Score
 - **o HAS-BLED Score**
 - Bleeding history
 - o Renal disease
 - Stroke/SE history
- Stroke/SE Hospitalization Major Bleeding Hospitalization New Acute Renal Failure Diagnosis New Chronic Renal Failure Diagnosis • New Cancer Diagnosis • Cardioversions and Catheter Ablations

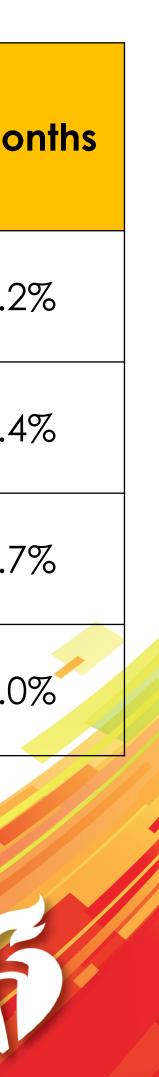
AF: atrial fibrillation; CHA_2DS_2 -VASc: congestive heart failure, hypertension, age \geq 75 years, diabetes mellitus, prior stroke or transient ischemic attack or thromboembolism, vascular disease, age 65-74 years, sex category; HAS-BLED: hypertension, abnormal renal and liver function, stroke, bleeding, labile international normalized ratio, elderly, drugs, and alcohol; SE: systemic embolism.


• **Time-varying Predictors:** Time-dependent predictors of non-persistence were evaluated daily during the follow-up period and included in the Cox proportional hazard ratio models.


Baseline Characteristics & Outcomes

	Warfarin (N = 21,420)		Apixo (N = 3	aban 2,103)	Dabigatran (N = 5,906)		Rivaroxaban (N = 29,385)	
	N/Mean	%/SD	N/Mean	%/SD	N/Mean	%/SD	N/Mean	%/SD
Age	66.5	10.8	62.6	10.5	61.6	10.0	61.0	10.2
Sex								
Female	7,596	35.5%	10,397	32.4%	1,606	27.2%	8,379	28.5%
Baseline Comorbidity								
Deyo-Charlson Comorbidity Index	2.2	2.4	1.8	2.1	1.5	2.0	1.5	1.9
CHA ₂ DS ₂ -VASc Score	3.1	1.8	2.5	1.7	2.3	1.6	2.2	1.6
HAS-BLED Score	2.3	1.4	2.1	1.3	1.9	1.2	1.9	1.2
Bleeding History	3,399	15.9%	3,718	11.6%	647	11.0%	3,175	10.8%
Renal Disease	3,417	16.0%	3,840	12.0%	430	7.3%	2,185	7.4%
Acute Renal Failure	2,031	9.5%	2,095	6.5%	249	4.2%	1,286	4.4%
Chronic Renal Failure	1,516	7.1%	1,216	3.8%	138	2.3%	719	2.4%
Stroke/SE History	2,235	10.4%	2,326	7.2%	379	6.4%	1,523	5.2%
Follow-up Time (days)	770.0	614.0	523.3	445.3	805.5	613.8	683.4	557.1
Number of Prescriptions								
Patients with >1 Index OAC Prescription	18,528	86.5%	28,180	87.8%	4,596	77.8%	24,366	82.9%

CHA₂DS₂-VASc: congestive heart failure, hypertension, age ≥75 years, diabetes mellitus, prior stroke or transient ischemic attack or thromboembolism, vascular disease, age 65-74 years, sex category; HAS-BLED: hypertension, abnormal renal and liver function, stroke, bleeding, labile international normalized ratio, elderly, drugs, and alcohol; SD: standard deviation; SE: systemic embolism.



Unadjusted Cumulative Incidence of Non-Persistence*

*Inset KM curve is for persistence over the entire follow-up

	Cumulative Incidence of Non- Persistence	3 months	6 months	9 months	12 mc
	Apixaban	22.2%	32.0%	38.5%	43.2
	Dabigatran	36.8%	49.6%	57.5%	63.4
	Rivaroxaban	29.9%	41.1%	48.0%	52.7
	Warfarin	28.7%	40.5%	48.4%	54.(

Cox Proportional Non-Persistence Hazard Ratios*

Cohorts		NON-I	PERSISTENCE				
DOACs vs Warfarin						Hazard Ratio (95% CI)	P-Value
Warfarin (Reference)							
Apixaban						0.66 (0.65-0.68)	<.0001
Dabigatran				_		1.23 (1.19-1.28)	<.0001
Rivaroxaban						0.84 (0.82-0.86)	<.0001
DOACs vs Rivaroxaban							
Rivaroxaban (Reference)							
Apixaban						0.79 (0.78-0.81)	<.0001
Dabigatran					B	1.47 (1.42-1.52)	<.0001
Apixaban vs Dabigatran							
Dabigatran (Reference)							
Apixaban –	∎					0.54 (0.52-0.56)	<.0001
	0.60	0.80	1.00	1.20	1.40		

CI: confidence interval.

*Model adjusted for age, sex, region, AF index year, Deyo-CCI, bleeding history, history of congestive heart failure, diabetes mellitus, hypertension, renal disease, liver disease, cancer, myocardial infarction, cardioversion and catheter ablations, dyspepsia or stomach discomfort, non-stroke/SE peripheral vascular disease, stroke/SE, transient ischemic attack, anemia and coagulation defects, alcoholism, peripheral artery disease, coronary artery disease, baseline medication use, and time-varying covariates during the follow-up.

Other Key Predictors of Non-Persistence*

Age			NON-P
	18-54 (reference)		
	55-64	•	
	65-74	-	
	≥75	-	
Time	-Varying Covariates		
	Stroke/SE (primary discharge) Major Bleeding (primary discharge)		_
	New Acute Renal Failure		
	New Chronic Renal Failure		
	New Cancer		
	Cardioversions and Catheter Ablations		
		0.50	1.00

CI: confidence interval; SE: systemic embolism.

*Model adjusted for age, sex, region, AF index year, Deyo-CCI, bleeding history, history of congestive heart failure, diabetes mellitus, hypertension, renal disease, liver disease, cancer, myocardial infarction, cardioversion and catheter ablations, dyspepsia or stomach discomfort, non-stroke/SE peripheral vascular disease, stroke/SE, transient ischemic attack, anemia and coagulation defects, alcoholism, peripheral artery disease, coronary artery disease, baseline medication use, and time-varying covariates during the follow-up.

PERSISTENCE				
			Hazard Ratio (95% CI)	P-Value
			0.73 (0.71-0.75)	<.0001
			0.59 (0.57-0.60)	<.0001
			0.55 (0.54-0.57)	<.0001
			1.45 (1.33-1.59)	<.0001
		_	2.42 (2.28-2.57)	<.0001
F			1.33 (1.26-1.40)	<.0001
			1.17 (1.10-1.26)	<.0001
			1.19 (1.11-1.28)	<.0001
			1.13 (1.07-1.19)	<.0001
1.50	2.00	2.50		1

Limitations

- Only associations could be concluded from this retrospective observational study.
- lack of clinical accuracy may have introduced bias into the study.
- capture.

• Given the nature of claims data, laboratory test results and biomarkers were not available. Diagnoses and drug prescriptions were identified using claims. Missing values, coding errors, and

• This analysis evaluated demographics and clinical characteristics, not predictors related to cost or access. The results may in fact be driven by nonmedical reasons, including out-of-pocket costs, formulary changes, physician preferences, and access issues, which we are unable to

Conclusion

- In this group of NVAF patients, at the end of the first 12 months of follow-up, over half of therapy
- Apixaban was associated with a significantly lower risk of non-persistence compared to persistence compared to warfarin and dabigatran.
- Age at baseline and clinical time-varying covariates were significant predictors of nonlikely to be non-persistent.
- complications associated with NVAF.

dabigatran, rivaroxaban, and warfarin patients had discontinued or switched from their index

warfarin, rivaroxaban, and dabigatran. Rivaroxaban was associated with a lower risk of non-

persistence, specifically older age at baseline was a significant predictor of persistence and patients with a hospitalization for a stroke or major bleeding after treatment initiation were more

• Such differences are critical as persistence with OACs is essential to prevent thromboembolic

References

- 1. Lip G, Freedman B, De Caterina R, Potpara TS. Stroke prevention in atrial fibrillation: past, present and future. 0876.
- 2. Lip GY, Keshishian A, Li X, Hamilton M, Masseria C, Gupta K, Luo X, Mardekian J, Friend K, Nadkarni A, Pan X. Stroke. 2018;49(12):2933-44.
- 3. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, Camm AJ, Weitz JI, Lewis BS, patients with atrial fibrillation: a meta-analysis of randomised trials. The Lancet. 2014;383(9921):955-62.
- Impact of non-adherence and discontinuation. Expert Opin Drug Saf. 2017;16(9):1051-62.
- 5. Lowres N, Giskes K, Hespe C, Freedman B. Reducing stroke risk in atrial fibrillation: adherence to guidelines has 907.

Comparing the guidelines and practical decision-making. Thromb Haemost. 2017;117:1230–1239. doi:10.1160/TH16-11-

Effectiveness and safety of oral anticoagulants among nonvalvular atrial fibrillation patients: the ARISTOPHANES study.

Parkhomenko A, Yamashita T. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in

4. Rivera-Caravaca JM, Esteve-Pastor MA, Roldán V, Marin F, Lip GYH. Non-vitamin K antagonist oral anticoagulants:

improved, but patient persistence with anticoagulant therapy remains suboptimal. Korean Circ J. 2019;49(10):883-

6. Ozaki AF, Choi AS, Le QT, et al. Real-world adherence and persistence to direct oral anticoagulants in patients with atrial fibrillation: a systematic review and meta-analysis. Circ: Cardiovasc Qual Outcomes. 2020;13(3): e005969.

THANK YOU!

